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Structural correlations in Gaussian random wave fields

Isaac Freund and Natalya Shvartsman
Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 22 July 1994)

Correlations in the structure of the amplitude, phase, and real and imaginary parts of the wave func-
tion of a Gaussian random wave field are derived from both analytical calculations and computer simula-

tions.
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I. INTRODUCTION

It is well known that the amplitude 4 and phase ¢ in a
random Gaussian wave field (speckle pattern) are statisti-
cally independent [1]. This results from the fact that
while there are special values for the amplitude—large
values at maxima, small ones at minima, etc.—there are
no special values for the phase, since any phase value can
be turned into any other phase value simply by passing
the wave through a uniform phase shifter (glass plate).
The amplitude, however, is invariant under such an
operation. Accordingly, the phase at any given point is
not only uncorrelated with the amplitude at that same
point but is also uncorrelated with the amplitude at every
other point. Recently, however, we found from experi-
ment [2] that there are significant correlations between
the spatial variations of the amplitude and the phase at
the same point. Here, we examine these correlations
theoretically, while correlations between the amplitude
and its gradient at one point and the gradient of the
phase at another point will be reported on separately.
We calculate the joint probability density functions
(PDFs) at a given point for various combinations of 4, [
(intensity), V 4, VI, Vg, etc., that provide the theoretical
basis for our previous empirical findings [2], and we also
use these PDFs to uncover structural correlations not
discussed previously. In addition, we find here empirical-
ly that the maxima, minima, and saddle points of the real
or imaginary parts of the wave field tend to be located on
a square quasilattice that exhibits significant short-range
order. This rather surprising structural relationship is
given a partial theoretical basis using a calculation of the
autocorrelation function of the field derivatives.

II. AMPLITUDE, INTENSITY, AND PHASE
PROBABILITY DENSITIES

Well-known results [1] for the PDF of 4 and ¢ that
will prove useful later on are p(A4,p)=p(A)p(p),
p(@)=1/(27), and
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(I) the average intensity in the speckle field, and
(A?)y=4( A)?/m. We note that p(I) may be obtained
from Eq. (1) by dividing by 2 4 and replacing 42 with I,
and that (I?)=2(I)2

The various other PDFs we require, such as p(4,Ve),
p(V A4,Vg), etc., are obtained by using as a starting point
an intermediate result contained in a highly useful paper
by Ochoa and Goodman [3]. On the way to determining
the PDF of ray directions in a Gaussian speckle pattern,
these authors give in their Eq. (41) the PDF
p Lo, 1, @x,1,,p,), where I, =3I /3x, ¢, =3d¢p/3x, etc.
Here we restrict ourselves to symmetric source distribu-
tions for which the parameters c,, c,, and d in this PDF
vanish and b, =b, =b, as this simplifies the ensuing cal-
culations with little practical loss of generality.

We begin by noting that p(l,,I,,@,,I,,@,) is in-
dependent of ¢, which implies that @ is statistically in-
dependent of A4, I, VA, VI, Vg, etc. Integrating
pLo,1,9.,1,,p,) over @ and converting from I and its
derivatives to A4 and its derivatives, we have as our start-
ing point for the calculation of various amplitude-phase

correlations ,
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where 202=(I) and b is related to the second partial
derivatives of the field autocorrelation function [Eq. (45)
of Ref. [3]]. Defining k=27 /(AZ) where A is the wave-
length and Z the distance to the sample, for a uniformly
illuminated square of side S, b= (I )(xS)?/24, for a uni-
formly illuminated circle of diameter D, b =(I )(xD)?/
32, while for circular Gaussian illumination with 1/e
points separated by W, b={I)(xW)>/16.

The various PDFs may be obtained from Eq. (2) by in-
serting appropriate delta functions and integrating. As
all these calculations follow the same course we provide
one illustration and then simply list our final results.
p(V A,Vg), for example, is obtained from

p(VA,V¢)=fO°°dA f_:dAx f_:dAy f_wwdtpx f_wwd¢yp(A,Ax,Ay,<px,¢y)8 {VA.—\/A,f—F A?
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Using the circular symmetry inherent in the combina-
tions A2+ A} and @%+g@?, the integrations are easily
carried out in polar coordinate, yielding p(V A4,Ve)
=p(VA)p(Ve), and thus a correlation -coefficient
(defined in Eq. (2.4-11) of Ref. [1]) u(VA4,V@)=0 in ac-
cord with our empirical findings [2] based upon previous-

ly described computer simulations [4]. p(VA) and
p (Vo) are given by
_Vv4 _(va4y
p(VA4) p SXP | T , 4)
2
p (V)= (20 2/b)V(p _, 5)
1+%(V¢))2

(VA)Y=(mb/2)'2, ((VA)?)=2b, (Vo)=ub'"?/ (20).
We also have from Eq. (2), p(A4,VA)=p(A)p(V A).

Although A4 and V A are statistically independent, I
and VI are not since VA and VI behave qualitatively
differently at optical vortices (which correspond to mini-
ma of zero intensity) [5—7], and we find
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where K is the modified Bessel function of order zero
8], {VI)=mo(b)"% ((VI?)=1602b, and u(I,VI)=m/
[2(16 —72)!/2]1=0.634, which is in accord with our com-
puter simulation that yields u(Z,VI)=0.637+0.008. This
large positive coefficient reflects significant internal
structural correlations, and as our computer simulation
indicates, is largely due to the fact that at the minima and
saddle points of the intensity where VI =0, the intensity
itself also tends to be small. We note that
p(I,VA)=p(I)p(VA), and that p(A4,VI) may be ob-
tained from Eq. (6) by multiplying by 2 4 and replacing I
with 42,
The PDF of greatest current interest to us is

e
p (I, V) may be obtained from this result by dividing by
24 and replacing 4? with I. In computing u(A, V)
from Eq. (8) we encounter the difficulty that ((Vg)?),
which appears in the normalization denominator of the

correlation coefficient, diverges logarithmically [Eq. (5)].
A useful remedy is the transformation
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® = arctan

which maps ® onto the interval 0—m/2. The PDF of ®
is then p (®)=sin(2®), and
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TABLE 1. Measured (calculated) correlation coefficients
uA™, o).
mn 1 2 3 4
1 —0.659 —0.671 —0.655 —0.629
(—0.664) (—0.675) (—0.659) (—0,.632)
2 —0.571 —0.556 —0.523 —0.486
(—0.574) (—0.559) (—0.525) (—0.488)
3 —0.477 —0.449 —0.411 —0.373
(—0.476) (—0.4438) (—0.409) (—0.372)
4 —0.393 —0.360 —0.322 —0.287
(—0.385) (—0.352) (—0.315) (—0.281)
sind | 4/(4) |
(A4,P)=
P 4(A4) cos®
21
7| A/(A)
Xexp|—— |——— ,
P 4 cosd } (9b)

where we use o /b!?=n/(2(Vep)) and 02=2( 4 )*/=.
Evident from Eq. (9), as well as from scatterplots ob-
tained from our simulation (not shown), are strong corre-
lations of large A with small ® (and therefore small Vo)
together with strong correlations of small 4 with large
Vo (®~m/2). The correlation of large 4 with small Vg
reflects a significant association of speckle spots and
phase saddles [2], while the correlation of small 4 and
large Vg reflects the fact that at optical vortices [5—7]
where Vg diverges the field amplitude must go to zero in
order to keep the wave function single-valued. As ex-
pected, p(I,Ve) and p (I,P) describe very similar corre-
lations between I and V¢ or ®.

A quantitative comparison of Eq. (9) with our comput-
er data may be had by comparing measured and calculat-
ed correlation coefficients for moments of the PDF. Us-
ing Egs. (1), (5), and (90 we find u(4,P)
=(m)"%8—3m)/{3[(4—m)(7*—8)]'/?} = —0.664, in ac-
cord with the measured value u( 4,®)=—0.659+0.007).
In Table I, we compare measurements of u[ A™,®"] with
calculation for 1<m,n <4, finding excellent (~1%)
agreement for all 16 moments.

Although V 4 and Vg are statistically independent, VI
and Vg are not, and
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Here K, is the modified Bessel function of order one [8].
Use of the transformation in Eq. (9a) yields
w(VL®)=(7/3)(8—37)/[(16—7*)(7*—8)]/?= —0.441,
in accord with our computer simulation that gives
u(VI,®)=—0.440%0.008. This anticorrelation is due in
part to the fact that at an optical vortex V¢ diverges
while VI vanishes.

2
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III. REAL AND IMAGINARY
STATIONARY POINT CORRELATIONS

As there is no important distinction between the real
and imaginary parts of the wave field (a 90° phase shift
converts one into the other), it suffices to discuss the real
part alone with the understanding that all conclusions ap-
ply equally well to the imaginary part. Either or both
parts may be measured using heterodyne techniques, so
the results obtained here may be verified by éxperiment as
well as by computer simulation.

We denote the real part of the field by R (x,y), its par-
tial derivatives by R, =dR /3dx, R, =dR /dy, and the zero
crossings of R, (R,) by Z, (Z,). In Figs. 1(a) and 1(b),
we display maps of Z, and Z, obtained from our com-
puter simulation [4]. As may be noted, the Z, (Z,)
curves tend to be elongated parallel to the y axis (x axis)
and appear to have a well-defined average spacing. This
is confirmed in Fig. 1(c), where we plot the normalized
autocorrelation function of Z, from Fig. 1(a). In addi-
tion to the peak at the origin, four additional peaks are
clearly visible, so that on average there is significant
short-range order over much of the wave field. Station-
ary points (maxima, minima, and saddle points) of R are
located at the intersections of Z, and Z,, and using an
extension of our previous work [9] we have shown that on
every zero crossing saddle points must alternate with ei-
ther maxima or minima. An important statistical proper-
ty of R (x,y) revealed by our computer simulation is that
there is a strong tendency for saddles to alternate with
maxima on any given zero crossing, while on neighboring
(nearly parallel) zero crossings saddles tend to alternate
with minima. This, together with the quasiperiodic spac-
ing of the zero crossings, gives rise to a square quasilat-
tice structure whose unit cell contains a saddle point at
the cell center and at each cell corner, a maximum at the
center of each of a pair of opposite cell sides, and a
minimum at each of the centers of the remaining cell
sides. This characteristic structure is illustrated in Fig.
1(d), which is based on the zero crossing maps of Figs.
1(a) and 1(b). We note that the average contents of a unit
cell—two saddle points, one minimum, and one
maximum—are consistent with a long-standing rule due
to Longuet-Higgins [10] that equates the total number of
saddles in the wave field to the sum of the numbers of
maxima and minima minus one.

Neither Fig. 1(c) nor Fig. 1(d) are easily calculated.
We can, however, provide a partial theoretical basis for
these results by verifying the strong quasioperiodicity of
R, (x,y) using the normalized autocorrelation function
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(c)

FIG. 1. (a) Zero crossings Z,(x,y). (b) Zero crossings
Z,(x,y). (c) Autocorrelation function of Z,(x,y) vs shift Ax in
pixels. A coherence length of the field corresponds to 19.2 pix-
els. (d) Quasilattice fragment formed by the zero crossings con-
tained in the dotted rectangles in the upper left-hand corners of
(a) and (b). *, saddle point; ®, maximum; O, minimum. Most
quasilattice fragments tend to be somewhat smaller than this ex-
ample which contains 1.5 complete unit cells and covers some
six coherence areas of the random wave field.

(R, (x,y)R,(x +Ax,9)) — (R, (x,y)) (R, (x +Ax,y))

Bxx (AX)= {

Other autocorrelations, such as Hy,(Ax), etc., are ob-
tained from Eq. (11) by replacing R, with R, etc. Using
the fact that both R and R, are stationary
processes, we have [11] (R, (x,y)R,(x +Ax,y))

172
[(R,%(x,y))—(Rx(x,y)V] [(R,?(x +Ax,y)>—(Rx(x +Ax,y))2] ]

(11)

=—3%(R (x,y)R (x +Ax,y)) /3(Ax)?, and similarly for
M, Since the autocorrelation of the real and imaginary
parts of the field are identical and the cross correlation
between these vanishes, the autocorrelation of the real
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part of the field is half the autocorrelation function of the
total field. For the circular sample of radius r; employed
in our present computer simulation, the field autocorrela-
tion is given by the Van Cittert—Zernike theorem [1] as
2J,(u)/u, where u=xr,[(Ax)*+(Ay)?]'/? and J, is the
Bessel function of integer order one [8]. We then obtain

(Ax)=3 J(krgAx)  Jy(krgAx) 1
Moxx X (Krs Ax )2 Kr, Ax ) ( a)
iy, (Ax)=8J,(kr Ax) /(kriAx) , (12b)

and p,,(Ax)=p,,(Ay)=0. Other autocorrelations such
as u,,(Ay), etc., can be written down by inspection from
these results. Measured and calculated autocorrelation
functions are compared in Fig. 2, where the excellent
agreement between theory and computer experiment is
self-evident, as is the strong quasiperiodicity of R,.
Equivalent results hold for R, as well as for other sample
geometries, so that the structures presented in Fig. 1
represent general properties of Gaussian random wave
fields.
IV. SUMMARY

We have found that the spatial variations of the phase
and amplitude in a Gaussian random wave field exhibit
significant correlations, with large amplitudes being
correlated with small phase gradients and vice versa. We
also found that large gradients of intensity are correlated
with small gradients of the phase, and that there are, in
addition, significant correlations of the internal structure
of the intensity, with small values of intensity being
strongly correlated with small gradients of intensity. The
minima, maxima, and saddle points of the real and imagi-
nary parts of the field were found to locally form a face-
centered-square quasilattice containing two saddle points,
one minimum, and one maximum per unit cell. Our cal-
culations assumed for simplicity a symmetric scattering
sample (source). Asymmetric sources can be expected to
yield qualitatively similar (although quantitatively
different) results that must reduce to the symmetric
source results when the asymmetry vanishes. Source
asymmetry can also induce new nonzero correlations,
such as p,,(Ax), etc. The structural correlations found
here, together with previously discovered near-neighbor

0 20 40 60 80 100
AX

FIG. 2. Autocorrelation functions (a) p,.(Ax) and (b)
My, (Ax) vs shift Ax in pixels. As in Fig. 1(c), a coherence length
of the field corresponds to 19.2 pixels. ,calculated [Eq.
(12)]; ®, measured. It may be shown from Eq. (12a) that the ex-
trema of u,, occur at the origin and at the extrema of J3(0.2Ax)
(see Ref. [4] for units), so that Ax (extrema)=0, 21, 40, 57, 73,
89, . . ., with first differences of 21, 19, 17, 16, 16, . . ., that illus-
trate the quasiperiodicity of the autocorrelation.

correlations between optical vortices [9], demonstrate the
existence of substantial hidden order in random Gaussian
wave fields. There are undoubtedly many other aspects
of this hidden order that remain to be uncovered.
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